Sequential Monte Carlo-guided ensemble tracking
نویسندگان
چکیده
A great deal of robustness is allowed when visual tracking is considered as a classification problem. This paper combines a finite number of weak classifiers in a SMC framework as a strong classifier. The time-varying ensemble parameters (confidence of weak classifiers) are regarded as sequential arriving states and their posterior distribution is estimated in a Bayesian manner. Therefore, both the adaptiveness and stability are kept for the ensemble classification in handling scene changes and target deformation. Moreover, to increase the tracking accuracy, weak classifiers including Support Vector Machine (SVM) and Large Margin Distribution Machine (LDM) are combined as a hybrid strong one, with adaptiveness to the sample scales. Comprehensive experiments are performed on benchmark videos with various tracking challenges, and the proposed method is demonstrated to be better than or comparable to the state-of-the-art trackers.
منابع مشابه
Sequential Monte Carlo Methods for Multi-Object Tracking
This document provides an overview over literature relevant to (multi-) object tracking based on sequential Monte Carlo methods. Besides milestones like [IB98a] (CONDENSATION) or [DdFG02] (sequential Monte Carlo methods), there are also some less fundamental articles, presenting some original ideas or extend the basic algorithms in a remarkable way. The reviewed articles are grouped in two majo...
متن کاملA comparative view on exemplar 'tracking-by-detection' approaches
In this work, we present a comparative evaluation of various ‘tracking-by-detection’ approaches on public datasets. The work investigates popular sequential Monte Carlo and template ensemble based trackers coupled with relevant visual people detectors with emphasis on exhibited performance variation depending on tracker-detector choice. Extensive experimental results are provided on public data...
متن کاملReentry of Space Objects: Tracking and Classification with Sequential Monte Carlo Techniques
A new approach of tracking and classification of space objects with sequential Monte Carlo methods and numerical integration techniques is given.
متن کاملModified Hybrid Bronchoscope Tracking Based on Sequential Monte Carlo Sampler: Dynamic Phantom Validation
This paper presents a new hybrid bronchoscope tracking method that uses an electromagnetic position sensor, a sequential Monte Carlo sampler, and its evaluation on a dynamic motion phantom. Since airway deformation resulting from patient movement, respiratory motion, and coughing can significantly affect the rigid registration between electromagnetic tracking and computed tomography (CT) coordi...
متن کاملRao-Blackwellized Monte Carlo Data Association for Multiple Target Tracking
We propose a new Rao-Blackwellized sequential Monte Carlo method for tracking multiple targets in presence of clutter and false alarm measurements. The advantage of the new approach is that Rao-Blackwellization allows the estimation algorithm to be partitioned into single target tracking and data association sub-problems, where the single target tracking sub-problem can be solved by Kalman filt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2017